77 research outputs found

    Measurement of Spin Polarization by Andreev Reflection in Ferromagnetic In1-xMnxSb Epilayers

    Full text link
    We carried out Point Contact Andreev Reflection (PCAR) spin spectroscopy measurements on epitaxially-grown ferromagnetic In1-xMnxSb epilayers with a Curie temperature of ~9K. The spin sensitivity of PCAR in this material was demonstrated by parallel control studies on its non-magnetic analog, In1-yBeySb. We found the conductance curves of the Sn point contacts with In1-yBeySb to be fairly conventional, with the possible presence of proximity-induced superconductivity effects at the lowest temperatures. The experimental Z-values of interfacial scattering agreed well with the estimates based on the Fermi velocity mismatch between the semiconductor and the superconductor. These measurements provided control data for subsequent PCAR measurements on ferromagnetic In1-xMnxSb, which indicated spin polarization in In1-xMnxSb to be 52 +- 3%

    Spin-dependent Transparency of Ferromagnet/Superconductor Interfaces

    Get PDF
    Because the physical interpretation of the spin-polarization of a ferromagnet determined by point-contact Andreev reflection (PCAR) is non-trivial, we have carried out parameter-free calculations of PCAR spectra based upon a scattering-theory formulation of Andreev reflection generalized to spin-polarized systems and a tight-binding linear muffin tin orbital method for calculating the corresponding scattering matrices. PCAR is found to measure the spin-dependent interface transparency rather than the bulk polarization of the ferromagnet which is strongly overestimated by free electron model fitting.Comment: 4 pages, 1figure. submitte

    Measurements of Spin Polarization of Epitaxial SrRuO3 Thin Films

    Full text link
    We have measured the transport spin-polarization of epitaxial thin films of the conductive ferromagnetic oxide, SrRuO3, using Point Contact Andreev Reflection Spectroscopy (PCAR). In spite of the fact that spin-up and spin-down electronic densities of states at the Fermi level for SrRuO3 calculated from band structure theory are practically the same, the experimental transport spin polarization for these films was found to be about 50%. This result is a direct consequence of the Fermi velocity disparity between the majority and minority bands and is in good agreement with our theoretical estimates.Comment: 12 pages pdf onl

    Point Contact Spin Spectroscopy of Ferromagnetic MnAs Epitaxial Films

    Full text link
    We use point contact Andreev reflection spin spectroscopy to measure the transport spin polarization of MnAs epitaxial films grown on (001) GaAs. By analyzing both the temperature dependence of the contact resistance and the phonon spectra of lead acquired simultaneously with the spin polarization measurements, we demonstrate that all the point contacts are in the ballistic limit. A ballistic transport spin polarization of approximately 49% and 44% is obtained for the type A and type B orientations of MnAs, respectively. These measurements are consistent with our density functional calculations, and with recent observations of a large tunnel magnetoresistance in MnAs/AlAs/(Ga,Mn)As tunnel junctions.Comment: 5 Figure

    Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure

    Get PDF
    We present measurements of the transport spin polarization of Ni_xFe_{1-x} (0<x<1) using the recently-developed Point Contact Andreev Reflection technique, and compare them with our first principles calculations of the spin polarization for this system. Surpisingly, the measured spin polarization is almost composition-independent. The results clearly demonstrate that the sign of the transport spin polarization does not coincide with that of the difference of the densities of states at the Fermi level. Calculations indicate that the independence of the spin polarization of the composition is due to compensation of density of states and Fermi velocity in the s- and d- bands
    • …
    corecore